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Abstract. The static polarizability of cylindrical systems is shown to have a strong dependence on a
uniform magnetic field applied parallel to the tube axis. This dependence is demonstrated by performing
exact numerical diagonalizations of simple cylinders (rolled square lattices), armchair and zig-zag carbon
nanotubes (rolled honeycomb lattices) for different electron-fillings. At low temperature, the polarizability
as function of the magnetic field has a discontinuous character where plateau-like region are separated
by sudden jumps or peaks. A one to one correspondence is pointed out between each discontinuity of the
polarizability and the magnetic-field induced cross-over between the ground state and the first excited
state. Our results suggest the possibility to use measurements of the static polarizability under magnetic
field to get important informations about excited states of cylindrical systems such as carbon nanotubes.

PACS. 77.22.-d Dielectric properties of solids and liquids – 78.40.Ri Fullerenes and related materials
– 75.20.-g Diamagnetism, paramagnetism, and superparamagnetism – 73.23.-b Electronic transport in
mesoscopic systems

1 Introduction

Cylindrical like systems, as nanotubes of carbon or one
dimensional stacks of ring organic molecules, show, in
the absence of time-reverse symmetry breaking pertur-
bations, two energetically degenerated families of one-
electron states. One is for electrons moving in clockwise
direction, the other is for electrons moving in counter-
clockwise direction. A magnetic field applied along the
cylindrical axis breaks time-reverse symmetry. The de-
generacies are then lifted and a diamagnetic current is
induced. If one considers the behaviour of the energies
of the many-particle states, one finds lot of level crossing
induced by the magnetic field. In other words, acciden-
tal degeneracies are created at some values of the exter-
nal magnetic field. This means also that the ground state
changes when the magnetic field varies.

Very recently [1] the study of the polarisability of cylin-
drical systems under magnetic field was suggested as a
possible probe to analyse their electronic structures. The
underlying mechanism of this proposed new spectroscopy
is quite simple. The magnetic field induces level crossings
as already mentioned. As a consequence of that, changes of
the ground state occur which at some fields is degenerate.
Applying in addition an electric field, two kinds of effect
are expected near those magnetic-field-induced acciden-
tal degeneracies: (i) at the crossing points, a linear Stark
effect may occur if there exists a non vanishing matrix ele-
ment of the perturbation between the two crossing states,
resulting in divergencies in the polarisability, (ii) when the
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matrix element between these two states is vanishing, the
system shows a quadratic Stark effect but the difference
between the quadratic Stark coefficients of the two states
involved creates discontinuities in the response function. A
careful analysis of the linear electric susceptibility should
then provide important informations about properties of
excited states such as their energies and symmetries. A
few years ago it was already pointing out that a magnetic
field should have pronounced effects on the polarisability
but for quite different materials and purposes, i.e. in [2–4]
small metallic particles (rings, disks or spheres) were con-
sidered in connection with weak localization. In particular,
it was found that the polarizability should be greater in
magnetic field than in zero field because of the disappear-
ance of weak localization. This theoretical prediction was
observed very recently in the ac polarizability of meso-
scopic rings [5].

Square lattices and honeycomb lattices (nanotubes)
rolled-up into cylinders with uniform electric and mag-
netic fields both applied along the cylindrical axis were
studied in [1]. With this configuration full quantum cal-
culations were not possible for large systems. Instead,
since the electric field creates a smoothly varying poten-
tial across the cylinder, a semi-classical expression for the
dielectric function was used. With this approximate ap-
proach, the discontinuities of the polarisability were well
observed – resulting in extraordinary rich structures –
however, the effects of possible linear Stark effect were
not described.

The main purpose of this work is to establish and ex-
tent on the basis of full quantum calculations the ideas
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Fig. 1. Cylinder made of rolled square lattice placed in two
uniform fields: an electric-field, E, perpendicular to the cylin-
drical axis and a magnetic field, H, parallel to it. The same
field configuration is adopted for carbon nanotubes (rolled
honeycomb lattices).

and concepts discussed in [1] using semi-classical calcula-
tions. For that purpose, the very same cylindrical systems
are considered, i.e. square and honeycomb lattices, but
with the modification that the electric field is applied per-
pendicularly to the cylindrical axis (cf. Fig. 1). The net
advantage of this choice is to allow for a separation of
variable, i.e. the two degrees of freedom corresponding to
the motion of the electrons along the circumference and
the cylindrical axis of the cylinder can be treated sepa-
rately. The exact calculation of the polarisability (i.e. by
fully quantum treatment) is then possible even for very
large systems. The first conclusions of [1] are confirmed
and the appearance of linear Stark effect are well identi-
fied. Additionally, the effects of the shape of a system and
of the Zeeman interaction on the dielectric function are
discussed as well as differences occurring in the magnetic
field dependent spectrum of armchair and zig-zag nan-
otubes. Finally perturbative calculations of the dielectric
response are done. They are in perfect agreement with the
exact results as long as we remain in the linear regime.

Before proceeding further we want to stress that all the
necessary conditions are available nowadays to realize the
experiments we are proposing. On one hand very accurate
measurements of the polarisability at very low tempera-
tures are possible [5,6]. A spectacular example was given
by the recent observations of a strong magnetic-field de-
pendence of the polarisability of multicomponent glasses
in the mK regime [6]. On the other hand, systems with di-
ameters in the mesoscopic range are required in order to
realize the experiment; however large circumference nan-
otubes are routinely produce today [7] and could be first
candidates of interest.

2 Rolled square lattices

We consider first cylinders in form of rolled square lat-
tices. As already mentioned in the introduction, two uni-
form fields are applied to those systems: a magnetic field
H, parallel to the cylindrical axis, and an electric field E,
perpendicular to it (cf. Fig. 1). In this work we are con-
cerned only with orbital magnetism. Therefore we will ne-
glect the spin of the electrons. The dynamic of the spinless
fermions are described in terms of the following standard
tight-binding model.

Ĥ = t
∑
n,m

(a†n+1,man,mei 2π
N φ + h.c.)

+ tp
∑
n,m

(a†n,m+1an,m + h.c.)

+ v
∑
n,m

cos(
2π
N
n)a†n,man,m. (1)

Different sites are labelled by the indices n along the cir-
cumference running from 1 to N , and m along the cylin-
drical axis running from 1 to M . The total number of sites
of the cylinder is thus given by NM . a†n,m (an,m) is the
creation (annihilation) operator of a spinless electron on
site (n,m). t and tp are the nearest-neighbour hopping in-
tegrals, φ is the magnetic flux in unit of the elementary
flux φ0 = ~c

e and v denotes the potential related to the
electric field, i.e. v = eRE, with R being the radius of the
cylinder.

The field E is supposed to be small enough so that
we are in the linear response regime. The magnetic flux is
proportional to the magnetic field and the section area of
the cylinder

φ =
N2a2H

8π2
(2)

where a is the lattice constant on the circumference. We
are interested in systems of a mesoscopic size along the cir-
cumference. Typically, R should be in the range of several
tens of nanometres. Then the corresponding flux quantum
is of order several tens of tesla which is nowadays reach-
able experimentally.

The effects of the Zeeman interaction are not consid-
ered in this work. With this interaction, if one includes also
the spin-orbital coupling, changes can arise in the calcu-
lated polarizability especially at high magnetic field or low
electronic density as briefly discussed below. The effects of
the orbital magnetism discussed in this work are expected
to be in any case predominant. Nevertheless, for practical
purpose, the effects of the Zeeman and spin-orbital inter-
actions should be also incorporated.

Moreover the electron-electron interaction terms are
not explicitely introduced in this work. Instead they are
supposed to be included in the effective one-electron pa-
rameters of our model in the spirit of the Fermi-liquid
theory of Landau. An explicit treatment of these inter-
actions which lead to screening of the electric field could
produce important qualitative changes especially in the
strong coupling limit as it was shown for ring systems [8].
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Fig. 2. Cylinder with N = 101, M = 100 and Ne = 100, the numbers of site along the circumference, along the cylindrical axis
and number of electrons (respectively). (a) Energies of the ground state (full line) and of the first excited state (dotted line) as
function of the magnetic flux, φ, without electric field (the references are the energies without magnetic field). (b) Polarizability
(D(T, 0) − D(T, φ))/D(T, 0), at kBT = 10−5t and for v = eER = 10−3t as function of the magnetic flux; t is the hopping
integral defined in (1), E the electric field and R the radius of the cylinder.

Without electric field, i.e. for v = 0, the spectrum of
(1) is given by

εp,q = 2t cos(
2π
N

(p+ φ)) + 2tp cos(
π

M + 1
q) (3)

with −N/2 ≤ p ≤ N/2− 1 and 1 ≤ q ≤ M . We have ap-
plied open boundary conditions at the ends of the cylin-
der. It has to be associated with the one-electron wave
functions

|Ψp,q〉 =

√
2

N(M + 1)

N∑
n=1

M∑
m=1

ei 2π
N pn

× sin(
π

M + 1
qm)a†n,m|0〉 (4)

where |0〉 is the vacuum.
At zero magnetic field, i.e. for φ = 0, the spectrum

is two fold degenerate, εp,q = ε−p,q, except for the states
with p = 0 and p = −N/2. Adopting the convention that
states with positive p are for electrons running in clockwise
direction then states with negative p describe electrons
moving in counterclockwise direction.

A finite magnetic field (φ 6= 0), breaks time-reversal
symmetry and implies lifting the two-fold degeneracy and
inducing a diamagnetic current. As a consequence, the en-
ergy spacings of the many-electron states are continuously
changing with increasing magnetic field. This is shown in
Figure 2a for the lowest eigenstates.

For a finite electric field (v 6= 0), it is not possible any-
more to solve analytically model Hamiltonian (1). How-
ever, for the configuration shown in Figure 1, we can treat

separately the variables n and m. This reduces the study
to a one dimensional Hamiltonian for a ring in an applied
electric field

ĤR = t
∑
n

(a†n+1anei 2π
N φ + h.c.)

+ v
∑
n

cos(
2π
N
n)a†nan. (5)

This is Harper’s model which has been extensively used
in very different contexts of condensed matter physics
and which can be treated. It should be noticed that, this
model, i.e., a ring placed in an uniform electric field –
is similar to a rectangular lattice with hopping integrals
given by t and v/2 and threaded by a magnetic field with
a flux given by φ = 2π

N .
In the following, we shall assume that t = tp. The

relative value of these two transfer integrals has consider-
able influences on the dielectric function but we leave this
study to future considerations.

Once the spectrum is known, we calculate the induced
dipole moment D, as function of the magnetic field and
temperature T as follows.

D(T, φ) =
Trd̂e−β(Ĥ−µ)

Tre−β(Ĥ−µ)
(6)

where, as usual, β = 1
kBT

and d̂ is the dipole operator

d̂ = eR
∑
n,m

cos(
2π
N
n)a†n,man,m. (7)
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Fig. 3. Polarizability of a cylinder with N = 101 and M = 100 as function of the magnetic flux φ in arbitrary units (a.u.).
(a) For Ne = 100, 101, 102 from the bottom to the top at a temperature of kBT ' 10−1 K. (b) The same but for kBT ' 10 K.

We show in Figure 2b the magnetic field dependence
of the polarisability for a cylinder with N = 101 and
M = 100 and a very few electrons on it, Ne = 100 (which
corresponds to a band filling of only 1%). In this example,
the electric field is such that v = 10−3t and the tempera-
ture is kBT = 10−5t. We choose this example because it
shows very clearly the main behaviours of the dielectric
response. In particular we choose N = 101 because this
gives an illustration of the signature of the linear Stark
effect.

First of all the induced dipole moment as function of
the magnetic field is periodic with a period of φ0 and is
symmetric with respect to φ0/2; these symmetries are al-
ready apparent in the spectrum (3). Second, the induced
dipole moment shows clearly two main characteristics:
(i) we can notice the presence of small peaks at
φ = 0, 1/2, 1, (ii) the induced dipole moment is a dis-
continuous function showing several jumps separating
plateau-like sections. Note that there is a slight curvature
in the whole spectrum, which is related to the persistent
current induced by the magnetic field.

As noticed before, a magnetic field induces crossing be-
tween the energies of the ground state and the first excited
state (Fig. 2a). As it can be seen in Figures 2, there is a
one to one correspondence between level crossing at zero
electric field and each kink in the induced dipole moment.

At each crossing, the ground state of the system
changes. These two states which are crossing respond
differently to an applied electric field. Both produce a
quadratic Stark effect but generally of different size. This
explains why the induced dipole moment is not a contin-
uous function of the magnetic field.

Near the crossing points, the response of the system
will depend on whether or not there is a nonzero matrix el-
ement of the electric field between the two states involved.
If the matrix element vanishes, the picture described above
is valid. On the contrary, if there is interaction between
those states, due to the degeneracy, the response will be-
come a linear (instead of quadratic) Stark effect resulting
in peaks of the induced dipole moment. More precisely,
using the expression of the wave function (4), the matrix
elements of the dipole operator can be calculated

〈Ψp,q|d̂|Ψp′,q′〉 = eRδp′,p±1δq′,q. (8)

With this equation, it is easy to see that linear Stark effect
could occur only for the following very particular values
of the magnetic flux: φ = 0, 1/2, 1. These are precisely
the values for which one gets peaks in our first example
(Fig. 2b).

It is worth notice that large enough Coulomb interac-
tion could change drastically the selection rules (8). Ap-
pearance of linear Stark effects for new values of the mag-
netic flux could then give a way to quantify importance of
electronic correlation effects.

At low enough temperature, one deals essentially with
the spectroscopy of a few levels around the Fermi level.
Therefore it is not surprising that the induced dipole mo-
ment for a well definite system, i.e., one which is well
ordered, well oriented and of well defined size (N,M), de-
pends strongly on the electronic density. This is clearly
apparent from Figures 3a and b. They are for the very
same system than before but for three different electron
fillings Ne = 100, 101 and 102. At such a low density,
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Fig. 4. Polarizability of a cylinder with N = 101, M = 1000 and Ne = 20 000 as function of the magnetic flux at kBT = 10−5t
in arbitrary units (a.u.). In the inset: zoom of the small magnetic field part.

the relevant mean level spacing behaves as ∆E ≈ 1/N2.
Figure 3a is for a temperature lower than ∆E by one order
of magnitude while Figure 3b is for a temperature higher
than ∆E by one order of magnitude. With a typical value
for t (t ≈ 2 eV) one can estimate a temperature of 10−1 K
for the spectrum 3a and 10 K for the spectrum 3b. With
these figures we want to emphasize the unique sensitivity
of the proposed measurements and its corollary which is
the necessity to work at very small temperature in order
to get the maximum informations.

In Figure 4, we show again the induced dipole moment
for the same electric field and temperature but for a bigger
cylinder, N = 101 and M = 1000, and more electrons on
it, Ne = 20 000 (electron density of 20%). The response
appears to be much more complex but shows the same
characteristics of peaks and plateau-like parts separated
by discontinuous jumps. This is more apparent in the in-
set which shows a zoom of the spectrum at low magnetic
fields.

Today it is possible to measure accurately very small
variations in the real part of the dielectric function [6].
Therefore, the dramatic magnetic field effects on the static
polarisability of mesoscopic cylindrical systems, discussed
in this work, could be measured and analysed. Several
important informations about excited states could then
be obtained. First, the positions of the discontinuities
and peaks should give informations about the energies of
the excited states. The nature of the response – linear
or quadratic Stark effect could be detected and therefore
should give information about the symmetry of the ex-
cited states. The magnitude of the response should give
also informations about the coupling constants. Finally,

the different curvatures observed in the whole spectrum
could give information related to the persistent current
induced by the magnetic field.

Of course, as it was already mentioned, the model we
are studied gives an oversimplified view of the reality. In
order to go to realistic systems several other aspects re-
main to be clarified. The very important case of electron-
electron interactions will be the subjects of subsequent
works. In the following, we discuss briefly, first, possible
influences of the shape of the cylindrical cross-section and,
second, the role plays by Zeeman interaction. For practi-
cal purposes, it is certainly necessary to study in details
both of these points.

Influences of the shape. Case of elliptical cross-section.
Until now, we have considered only cylindrical systems
with circular cross-section. With this particular shape, a
uniform electric field creates the cosine potential appear-
ing in (1). The electronic eigenstates of these cylindrical
systems are characterized by a pair of wave vectors, k and
q, for the motion along the circumference and the cylin-
drical axis respectively. The cosine potential of equation
(1) couples states of different wave vectors, k1, q1 and k2,
q2, in such a way that the following selection rules are
fulfilled ∆k = k1 − k2 = ± 2π

N and ∆q = q1 − q2 = 0,
as already discussed above. However, there exist many
cases where the section of the cylinder may have different
shapes. One could think, for instance, of a one dimensional
stack of large organic polycyclic molecules which do not
form regular circles according to the well known hybridis-
ation properties of carbon atom. With different shapes the
cosine potential will be affected undergoing new selection
rules. These new selection rules could in turns influence



526 The European Physical Journal B

0 0.1 0.2 0.3 0.4 0.5

f

0

0.02

0.04

0.06

0.08

(D
(T
,0
)

D
(T
,f
))
/D

(T
,0
)

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

(D
(T
,0
)

D
(T
,f
))
/D

(T
,0
)

0 0.1 0.2 0.3 0.4 0.5

f

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5
0.2

0.1

0

0.1

a)

b)

c)

d)

-
-

Fig. 5. Polarizability (D(T, 0)−D(T, φ))/D(T, 0) of an ellipse and a cylinder with N = 100, M = 100 and Ne = 100 as function

of the magnetic flux, φ, at kBT = 10−5t. (a) Ellipse with a2

b2
= 0.25 and v = 10−3t. (b) Cylinder with v = 10−3t. (c) Ellipse

with a2

b2
= 0.25 and v = 10−2t. (d) Cylinder with v = 10−2t.

substantially the induced dipole moment. For illustration
we consider here the case of an elliptical cross-section and
compare its response with the one of a circular section.

For a general cross-section the dipole operator takes
the following form

d̂ = e
∑
n,m

R(n) cos(Θ(n))a†n,man,m (9)

where R(n) is the distance of the site n to the cylindri-
cal axis and Θ(n) the corresponding polar angle with re-
spect to some arbitrary axis. The sites are supposed to be
equally space. R(n) and Θ(n) are determined under this
condition. The model (1) is then still valid and the elec-
tronic spectrum of the system without electric field is still
given by equation (3).

An ellipse is characterized by two parameters, the ma-
jor axis 2a, and the minor axis 2b. We give an example for
an elliptical cylinder with N = 100, M = 100, Ne = 100
and b/a = 0.5.

In Figures 5a and b are reported the induced dipole
moment for elliptical and circular systems with v = 10−3t;
Figures 5c and d present the same results but for v =
10−2t.

For an ellipse, there is additional coupling between k
states which do not fulfilled the original selection rules
∆k = ± 2π

N and ∆q = 0. At small electric fields (lin-
ear regime) these additional couplings yield very smooth
changes only on the shape of the induced dipole moment;
as can be seen in Figures 5a and b, only the amplitudes are
slightly modified. However, at higher electric fields more
dramatic changes appear (Figs. 5c and d). This is the case
in our example where one can notice, for instance, the
appearance of a new peak at φ ' 0.26 for an elliptical
section.

Influences of the Zeeman interaction. For realistic con-
sideration of fermions with spin 1/2, the Zeeman interac-
tion combined with the spin-orbital interaction must be
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Fig. 6. Carbon nanotubes are rolled honeycomb lattices around the Z-axis. Here are represented part of the honeycomb lattice
for (a) zig-zag carbon-nanotubes and (b) armchair carbon-nanotubes. They are both achiral nanotubes, similar to cylindrical
systems with 4 carbon atoms per unit cell marked here by the black dots.

clarified. In this subsection we give only a first hint in
that direction.

The Zeeman Hamiltonian is given by

ĤZ = gµBSB (10)

where S is the total spin of the system, µB, the Bohr
magneton and g, the Landé factor. Due to the effect of
this interaction every one-particle level will be split into
a spin-up and spin-down component by a term propor-
tional to φ/N2. Therefore, by considering also the effects
of the spin-orbit coupling, the whole spectrum could be
changed: both, the positions of the accidental degenera-
cies (discontinuities) could be shifted and the intensities
of the induced dipole moment could be modified. The im-
portance of those changes can be estimated by considering
the ratio of the Zeeman energy φ/N2 and, ∆(n), the level
spacing of the one-dimensional ring Hamiltonian (5)

∆(n) = 4t sin(
2π
N

) sin(
2π
N

(n+ φ+
1
2

))

' 4π
N

sin(
2π
N
n). (11)

The spacing is not an uniform function of N . It be-
haves as 1/N2 at the bottom of the band, and as 1/N
in the middle of the band. With this consideration one
may conclude that the Zeeman plus spin-orbit coupling
can become important in the case of (i) high magnetic
fields or/and (ii) low electronic density.

3 Armchair and zig-zag carbon nanotubes

Within the class of cylindrical materials, carbon nan-
otubes are certainly among the most interesting and fas-
cinating. They are honeycomb lattices rolled into cylin-
ders [9]. Part of their interests comes from their unique
interplay between geometry and electronic properties [7].
Indeed, a single-wall nanotube can be either metallic or

semiconducting depending on its diameter and its chiral-
ity. This fact was recognized very soon after their discov-
ery using tight binding models [10] and from first principle
calculations [11].

We consider in the following the two simplest kinds of
nanotube: the so-called zig-zag nanotubes (Fig. 6a), which
are semiconductors (conductors) if the number of unit cell
N is not (is) a multiple of 3, and the armchair nanotubes
(Fig. 6b), which are always metallic [7]. They are the two
kinds of nanotube having the highest symmetry. Moreover
they are the only two examples showing no chirality. Be-
cause of this last characteristics, they can be considered as
a kind of rolled square lattice but with four carbon atoms
per unit cell; these units are shown on the Figures 6 for
both systems. In the presence of an uniform magnetic field
along the cylindrical axis, the spectrum is formally similar
for the two systems

εp,q = ±(1 + up ± (upvq)1/2)1/2 (12)

where for zig-zag nanotubes

up = 2(1 + cos(2π
N (p+ φ))), with p = 1, .., N

vq = 2(1 + cos( π
M+1q)), with q = 1, ..,M

(13)

and for armchair nanotubes

up = 2(1 + cos( π
M+1p)), with p = 1, ..,M

vq = 2(1 + cos(2π
N (q + φ))), with q = 1, .., N.

(14)

The roles of up and vq are just exchanged from one case
to the other. For calculating these spectra we have used
the transformation from a hexagonal lattice to rectangular
lattice with four sites per unit-cell introduced in [12].

With an electric field, the spectrum can no longer be
obtained analytically however – as for the case of rolled
square lattices – since the systems chosen have no chi-
rality, it is still possible to treat separately the variables
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Fig. 7. Armchair nanotube with N = 50, M = 500 and Ne = 50 000 (half-filling) at kBT = 10−5t. (a) Energies of the ground and
first excited state as function of the magnetic flux φ (the references are the energies without magnetic field). (b) Polarizability
(D(T, 0)−D(T, φ))/D(T, 0) for v = 10−3t as function of the magnetic flux.

along the circumference and the cylindrical axis. The ef-
fective systems we have then to consider explicitely are
rings of N units, containing each four carbon atoms, but
where the coupling constants depend on the wave vector
in the cylindrical direction. Proceeding that way, it is then
possible to study exactly the response to an electric field
even for very large systems.

In our calculations we neglect the two ends of the nan-
otubes which consist of a “hemisphere” of a fullrene [7].
Since the scale along the cylindrical axis is in our calcu-
lations much larger than the one along the diameter this
approximation should be justified (in reality ratio as large
as 105 between these two characteristic scales are usual).

We present first, results for armchair and zig-zag nan-
otubes with N = 50 and M = 500 at half-filling, Ne =
50 000, for a small electric field, v = 10−3t, and low tem-
perature, kBT = 10−5t. For this choice of N , the zig-zag
nanotube is semiconductor. The Figures 7a and b show
the ground state and first excited state energies and the
induced dipole moment, respectively, as function of the
magnetic flux for the armchair nanotube; the Figures 8a
and b show the same results but for the zig-zag nanotube.

The electronic structure of carbon nanotubes under
uniform magnetic field parallel to the tube axis was al-
ready study in the past using kp perturbation theory [13]
and exact calculations [14]. A magnetic field induced
metal-insulator transition was then predicted: a semicon-
ductor nanotube becomes metallic for high enough mag-
netic field and, reversely, a metallic nanotube becomes
semiconductor. This dramatic behaviour predicted theo-

retically could be an explanation for magnetoresistance
experiments on carbon nanotube bundles [15] and more
recent ones on multi-wall carbon nanotubes [16].

We recover these results in our calculations. The mag-
netic field opens a gap in the case of the armchair nan-
otube (Fig. 7a); on the contrary, the magnetic field tends
to close the gap for the zig-zag nanotube until φ ' 0.35
where the gap starts to increase smoothly (Fig. 8a). These
different behaviours are also apparent in the polarizabil-
ity as can be seen on the Figures 7b and 8b; the response
functions follow the evolution of the band gaps in both
cases. Additionally, one can notice the peak observed at
φ = 0 for the armchair nanotube showing that the ground
state and the first excited states are directly coupled via
the electric-field given rise to a strong linear Stark effect.

The static electric polarizability tensor (without mag-
netic field) of carbon nanotubes,α, was studied in the past
for the half-filled case, using a tight-binding model [17]. It
was shown that the αzz component of the polarizability
tensor is proportional to R/E2

g , where Eg is the band gap
and R is the radius of the tube, while αxx is independent
of Eg and is proportional to R2. In our case we are con-
cerned with αxx and we have check the above mentioned
scaling law for zig-zag and armchair nanotubes. Our re-
sults, for these particular achiral examples, are consistent
with the study in [17].

The αzz component was studied in [1] with an applied
magnetic field but using a semi-classical approximation
which do not allow us to do direct comparison with the
results of the present work. However, it is reasonable to
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Fig. 9. Polarizability in arbitrary units (a.u.) of (a) armchair and (b) zig-zag nanotubes with N = 50, M = 500, Ne = 49 000,
kBT = 10−5t and v = 10−3t as function of the magnetic flux φ.

think the absolute values of the polarizability tensor will
not change drastically by applying a magnetic field. There-
fore, according to the results of [17], one can conclude that
the static-magneto polarizability should be much more in-
tense for longitudinal electric field than transversal electric
field.

The second results we want to show, as an illustra-
tion, are for the two very same systems but slightly away

from half-filling (Ne = 49 000). The corresponding induced
dipole moment are shown in Figures 9a and b, for arm-
chair and zig-zag nanotubes, respectively, at low magnetic
field only. Without going into any details one immediately
sees that both responses are considerably much intricate
than the ones at half-filling, indicating more complicated
behaviours of the ground and first-excited states as func-
tion of the magnetic field. The analysis of such responses
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should give important informations about the electronic
spectrum of these compounds.

4 Perturbative results

In the linear regime, where we mainly worked, a pertur-
bative expression for the induced dipole moment should
be appropriate. Let us consider a system described by the
general Hamiltonian Ĥ = Ĥ0 + V̂ where Ĥ0 is for the sys-
tem without electric field and V̂ takes into account the ef-
fect of the electric field acting as a perturbation. At second
order in perturbation theory, the induced dipole moment
is given by

D(T, φ) =
1
2

∑
I,J

|〈ΨI |V̂ |ΨJ〉|2
εI − εJ

fF(εI)(1− fF(εJ )) (15)

where Ĥ0|ΨI〉 = εI|ΨI〉 and fF(ε) = 1/(eβ(ε−µ) + 1) is
the Fermi distribution function, µ being the chemical
potential.

Let us illustrate the effectiveness of these perturbative
calculations for the particular case of the cylinders of the
Section 2, where the selection rules are particularly restric-
tive. Indeed, in this case V̂ is given by the dipolar operator
(7) and the wave function, |ΨI〉, by Bloch functions (4),
|Ψp,q〉. The matrix elements of the dipole operator are then
given by the equation (8), resulting in a simple expression
for the polarizability of a cylinder

D(T, φ) =
e2R2

2M

N−1∑
p=0

M∑
q=1

fF(εp,q)

×
{

1− fF(εp−1,q)
εp(φ) − εp−1(φ)

+
1− fF(εp+1,q)
εp(φ) − εp+1(φ)

}
(16)

where we add the dependence over the magnetic flux φ. R
is the radius of the cylinder, M and N the number of sites
along the cylindrical axis and along the circumference,
respectively, εp,q the spectrum defined in (3) and εp(φ) =
2t cos(2π

N (p+ φ)).
We have compared this perturbative expression with

exact calculations for different cylinders and several
choices of temperature and values for the hopping inte-
grals, t and tp. The results are always in perfect accor-
dance, except for the very particular points where linear
Stark effect occur, as far as we remain in the linear regime.
In this regime all the curves presented in this work could
have been obtained by the perturbative expression (16).
This could give a simplified framework to perform in the
future more sophisticated analysis of the problem like in-
clusion of electron-electron interaction, for instance.

For nanotubes, more complex expressions will result
due to less restrictive selection rules. However, such per-
turbative calculations can also be done.

5 Conclusions

The main purpose of this work was to demonstrate, using
exact calculations, the strong magnetic field dependence

of the static polarizability of cylindrical systems when the
magnetic field is parallel to the tube axis. This was already
predicted in [1] on the basis of semi-classical analysis.

The demonstration was done for two kinds of system.
On one hand we have considered rolled square lattices
and, on the other hand, two kinds of non-chiral carbon
nanotubes, i.e., metallic armchair nanotubes and the zig-
zag nanotubes, which can be either semiconducting or
metallic [7]. For all these cases, the polarizability was
shown to present very complex structures as function of
the magnetic field in which one can identify two differ-
ent characteristics (cf. Fig. 2): (i) the polarizability is
a non-continuous function with sudden jumps separating
plateau-like regions (ii) additionally, small peaks may ap-
pear for special values of the magnetic field in place of
jumps.

A full understanding of these complicated behaviours
was given by following the behaviour of the ground state
by increasing the magnetic field: due to the Aharonov-
Bohm effect, many changes of ground state occurs and for
some values of the magnetic field accidental degeneracies
happen where the ground state becomes two fold degen-
erate. A one to one correspondence is found between the
accidents in the polarizability and the accidental degen-
eracies of the ground state. Each plateau-like region of
the polarizability corresponds to a quadratic Stark effect
with a coefficient proper to the corresponding magnetic-
field induced ground state. Each peak corresponds to a
linear Stark effect appearing at accidental degeneracies
when there is direct coupling between the two states in-
volved (cf. Fig. 2). Therefore, it seems possible to study
the static polarizability under magnetic field in view to
obtain informations about excited states of cylindrical sys-
tems.

For ring shape cylinders and with a one-electron pic-
ture, the peaks due to linear Stark effect appear for very
particular magnetic field values, φ = 0, 1/2, 1. The situa-
tion could be very different for different shape – as we have
seen for elliptical tubes – or with Coulomb interaction.

All the results shown in this work are for selected cylin-
drical systems. Indeed, since the proposed measurements
are extremely sensitive to the characteristic sizes of the
systems, N and M , and to the electron density, it is nec-
essary to be able to select with high accuracy an indi-
vidual system. However, it is already possible to perform
measurements on individual single-wall nanotube [18], for
instance, which make us to believe that the proposed ex-
periments are nowaday possible to realize.

Finally, we have done our studies with a one electron
picture but the screening due to electron-electron inter-
action is very important and can diminish considerably
the absolute value of D(T, 0) [17]. However, it is reason-
able to believe that the screening effects should be inde-
pendent of the applied magnetic field. Therefore, the ratio
D(T,φ)−D(T,0)

D(T,0) should remain unchanged with screening ef-
fects.

Several extensions of this work are necessary. For the
near future we are planning to work in three directions.
(i) We plan to consider instead of individual, a set of
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cylindrical systems – with a particular attention for set
of nanotubes and multi-wall carbon nanotubes. (ii) An
explicit treatment of the electron-electron interaction is
absolutely needed especially since important qualitative
changes could occur for ring systems [8] and very im-
portant effects were shown on transport measurements of
single-wall nanotubes [19]. (iii) Disorder effects (topolog-
ical or substitutional disorder) are also of importance for
the properties we are interested in [20] and should be con-
sidered in the future.

It is a pleasure for us to thank Prof. P. Fulde for his support
and careful reading of the manuscript.
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